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Summary 
 

The space environment is becoming heavily congested due to the increasing number of smaller 'cube' 

satellites, larger 'monolithic' satellites, and plans for launching distributed satellite systems. The current 

management of earth satellites relies heavily on human intervention and decision-making, resulting in a 

lack of a coordinated system that creates legal, administrative, and capability problems. To address this, 

the proposed solution is to automate the operations and allow inter satellite communication to remove 

the risk of human error and enable quicker responses. This work could constitute a steppingstone to full 

autonomy. Researchers have proposed the concept of trusted autonomous operations (TAO) for 

distributed satellite systems, which involves the use of advanced algorithms and AI to enable 

autonomous decision-making and coordination among satellites and ground stations. A protocol for 

sharing information between members of the system is required for total autonomy in distributed 

systems. 

Statement of problem 
 

With the proliferation of smaller ‘cube’ satellites, the increasing deployment of larger ‘monolithic’ 

satellites and plans to launch distributed satellite systems containing thousands of spacecrafts, the space 

environment is quickly becoming heavily congested. The management of earth satellites currently 

relies heavily on human intervention and decision making. Several teams and organisations operate 

under various standards and are beholden to the whims of their governments. This lack of a coordinated 

system has created a spaghetti of legal, administration and capability problems. Using these systems, 

the organisations are tasked with manually performing predictive calculations and issuing corrective or 

emergency avoidance manoeuvres – some of which are highly critical and dependant on the shared 

information.  

The importance of implementing space operations correctly is paramount, as a single failure could 

result in damage to multi-billion-dollar infrastructure and start a cascade of runaway collisions. The 

current system is inherently risky for several reasons. First, there are limitations to what information is 

available from the ground, due to visibility and resolution issues. Secondly, where the problem is time 

sensitive and solutions rely on the sharing of accurate data, a large amount of overhead is inherently 

part of the system as teams need to contact each other while accounting for relevant geo-political 

issues. Thirdly, organisations are under no obligation to share data or wont due to security concerns. 

The culmination of these problems is a system where different organisations or teams are making 

decisions that affect each other but are not considering the same data. With the number of resident 

space objects rising rapidly and tracking capability's being dramatically different between organisations 

the rate of collisions is rising. To mitigate these issues organisation have implemented safeguards 

balanced with the need for timely decision making, but these policies are also inconsistent between 

participating parties. 

With proposals to add thousands of extra satellites some of which act as distributed systems into orbit it 

is obvious that a rigorous, standardised and responsive system for managing these satellites is needed 

as the current system does not scale well. 
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The proposed solution is to automate the operations and allow the satellites to communicate with each 

other. This would largely remove the risk of human error and allow for quicker responses. These quick 

responses are also a requirement for the implementation of close range DSS formations as in some 

cases they need to maintain strict positions where centimetres and picometers can be significant. 

Our focus is on the coordination between individual DSS formations as that is a significant step 

towards implementing a global system and can be readily implemented into existing space 

infrastructure while relieving the pressure on manual operators. It is notable that full autonomy is not 

necessarily the focus, but an AI based system that can take high-level commands and coordinate the 

whole formation at a low level autonomously. This work however could constitute a steppingstone to 

full autonomy. 

Background and literature review 

Distributed satellite systems (DSS) are becoming increasingly popular in space exploration due to their 

ability to provide global coverage with high agility and redundancy. However, DSS operations require 

the coordination of multiple satellites and ground stations, leading to increased complexity and 

potential vulnerabilities in the system. To address these challenges, researchers have proposed the 

concept of trusted autonomous operations (TAO) for DSS, which involves the use of advanced 

algorithms and artificial intelligence (AI) to enable autonomous decision-making and coordination 

among satellites and ground stations while ensuring the integrity and security of the system. 

Historically autonomy has been required and implemented primarily for deep-space missions. This was 

required as these missions cannot rely on control from ground-based stations due to communication 

delays over these distances [1]. Partial autonomy on a low level however has been included in all space 

missions. Total autonomy however is still an area of active research and its applications in Low Earth 

Orbit (LEO) are still being evaluated. Whether or not a mission should incorporate autonomy and to 

what extent is dependent on the mission requirements and architecture. Cramer et al in [4] outline when 

it is prudent to apply autonomous systems. They clarify that: response time, performance improvement 

and risk awareness are significant considerations when choosing to implement autonomy. Araguz et al 

in [5] outline the key issues that autonomy can solve. They list mission robustness and tolerance 

against failures, improvement of science return, reduced visibility and communication delays. All of 

these are significant considerations in the deployment of DSS formations and as such the application of 

robust autonomy in DSS systems is of paramount importance if they are to succeed at scale. 

Given the need for total autonomy in distributed systems a protocol for sharing information between 

members of the system is required. Lagona et al in [1] discuss the use of an ad-hoc communication 

network, a principle taken directly from existing computer networks. They point out that a lead 

spacecraft would coordinate the calculations passing the data periodically to the members of the 

network so that a new lead could be appointed if the former lead loses visibility, the communication 

link fails, or it can’t perform the function appropriately. The hardware solutions to transmit the data 

vary depending on the configuration and data requirements. Rupp in [6] and Bauer et al in [7] discuss 

the viable solutions to both communication and navigational challenges in this regard. They point out 

that low to medium performance formations (km - cm level control) can use Radio frequency (RF) 

based techniques while high performance formations (sub-cm to picometer level control) would require 

optical methods. They also outline the need for GPS-like systems to coordinate positioning, the Starling 

project employed the use of star tracking optical devices for a similar purpose. Other data sources that 
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are periodically updated sourced from ground-based systems or other formations could also be 

incorporated into the network. This could allow for the tracking of RSOs or to supplement the 

network's existing information to fill in blanks or verify data. 

Several models and approaches have been proposed for managing DSS systems. The most studied 

architecture is the Leader/Follower type. Under this architecture the problem is modelled as a relative 

motion control problem [3]. The AI approaches vary, several approaches have been tested and 

implemented in space missions. Others have been proven to have merit but are yet to be applied in the 

field of DSS [1]. AI models are metaheuristic; this is due to the lack of determinism in their 

approaches. There is no guarantee that subsequent evaluations from the model will yield the same 

result given the same starting conditions. However, AI methods can be made to run a lot faster than 

strictly numerical approaches [1]. Several nature inspired models were proposed by Oche et al in [2] 

they list several insect swarm-based approaches to optimisations. Lagona et al in [1] discuss Particle 

Swarm Optimisation (PSO), Genetic algorithms (GA) and neural networks as approaches to issues of 

trajectory calculation and formation optimisation. The general approach is to allow for high level 

commands to be sent to the formation as a whole and to then have the formation apply AI models to 

determine the low-level procedures each satellite in the formation would have to perform. 

In conclusion, the use of autonomy in space missions is not a new concept, and partial autonomy has 

been included in all space missions. However, total autonomy is still an area of active research, and its 

application in Low Earth Orbit is still being evaluated. The decision to incorporate autonomy in a 

mission depends on various factors such as response time, performance improvement, and risk 

awareness. Autonomy can solve many issues in space missions such as mission robustness, tolerance 

against failures, improvement of science return, reduced visibility, and communication delays. To 

enable total autonomy in DSS, a protocol for sharing information between members of the system is 

required, which can be achieved through an ad-hoc communication network. Several AI approaches 

have been tested and implemented in space missions, and nature-inspired models such as insect swarm-

based approaches, Particle Swarm Optimization, Genetic algorithms, and neural networks have been 

proposed for managing Distributed Space Systems. Overall, the application of robust autonomy in 

Distributed Space Systems is crucial for their success at scale. 

Research questions 

 
Question 1: How effective are AI methods when compared with to conventional techniques? 

Question 2: What components of satellite missions are improved by AI techniques? 

Question 3: How robust are AI techniques factoring in the lack of determinism? 

Question 4: How do AI techniques interface with physics-based trajectory methods? 
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Materials 
Material Justification 

STK Basis simulation environment that will be used to 

model the satellite configurations and test the 

models. 

PC Personal Laptops or Computers, needed to store 

data, run simulations, evaluate models, write up 

documents. 

University Server Time for training Training models and running simulations could 

take a long time on a conventional PC or Laptop. 

So, access to more computing power would be 

ideal. 

 

Methodology 
 

Our procedure will be entirely computational, first we will construct an existing satellite formation - a 

constellation. This will be modelled in STK. The first formation will be of the US GPS network which 

consists of 31 satellites. This will allow for an analytically viable base for the testing of models. The 

data for these satellites will be pulled from Celestrak using the Simplified General Perturbations 4 

(SGP4) format. Other relevant astronomical bodies such as the earth and moon will be pulled from JPL 

Horizons. 

Once this simplified model is implemented, we will assess our propagation methods (built into STK) 

and verify them with historical data for a given epoch. Concurrent with this process we will implement 

AI models, specifically metaheuristic methods. These methods include Deep Reinforcement Learning 

(DRL), Particle Swarm Optimisation, Genetic Algorithms (Neural Network Basis) and a set of insect 

swarm algorithms. As DRL is a data driven approach it will require training before being implemented 

and assessed. This data will consist of historical manoeuvres which will be extracted from Celestrak by 

running propagations on the orbits and comparing them to the historical outcome. If the two vary then a 

manoeuvre occurred, we can then extract this data, determine the manoeuvre performed and use it for 

training. This extraction approach can be automated with Python. As the DRL is a reinforcement 

learning model a large part of the approach will be training it in the STK simulated environment. The 

other methods will be trained and improved in situ during simulation.  

The AI models are primarily used for decision making. This means that physics-based trajectory 

models will need to be implemented to process the AI model output. This will be a large part of the 

propagation testing and as such these models will be assessed during our initial assessment of the test 

GPS formation. Most simulation software including STK models the earth as a set of harmonics to 

account for perturbations. Frequently used is the J2 perturbation model with includes a set of two 

harmonics but this can be made more precise if we also assess to a J6 perturbation model, but this 

might prove irrelevant. We will determine this in the original propagation testing phase. 

All the models will have to be verified in comparison to some expected output. We propose selecting a 

set of past manoeuvres again from Celestrak and ranking them in terms of complexity. The trained 
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models will then be tasked with responding to the initial situation that resulted in these manoeuvres. 

The outcomes will be compared to each other and how it was approached at the time. Metrics 

considered will be fuel usage, how reliably the formation maintains required parameters (distance, 

viewing area, viewing angle, altitude, attitude, etc) and the chance of collision during the 

manoeuvre(s). It is notable that we intend to find test situations that depict the scenario of launching a 

constellation and how the satellites progress to their final stable orbits. 

The actual satellites themselves will be modelled as a type of network node for communication 

purposes and will incorporate a leader-follower decision making protocol. This will require the 

determination of a communication strategy. We will assume that any satellite with visibility of another 

satellite can communicate. From a modelling perspective this will allow us to build a graph between 

the nodes and use this to evaluate whether a given member is connected to any other member. 

Regarding external data, it will be assumed that the satellites have perfect positioning data and periodic 

access to RSO trajectory data as if from ground stations. 

We can take the output data from the simulations and process it in excel or with Python. This will allow 

for the creation of graphs depicting the model, situation and relevant comparison metrics (as outlined 

above). Using this data, we can compare the overall performance of each model as well as the 

situational performance. This will allow us to outline the best model overall and for a given situation. 

Project Planning 
 

Planning of time and resources is straight forward for this project. As most tasks rely on personal 

computer access and the methodology follows a software engineering approach, many tasks are 

concurrent and iterative. As such for most of the project learning the simulation software, training the 

models, implementation and running simulations will be continuously done with skills being refined. 

The first task is to dive deeper into the relevant literature and theory underpinning DSS, orbital 

mechanics and AI followed by learning the software.  Most tasks are not interdepended but testing of 

propagation methods must be done before implementation of models and gathering comparison 

scenarios before running simulations. Processing of data and documentation of findings and results will 

be continuous for most of the project, culminating in a final report and presentation in November. This 

project is also marked by assessment tasks and holidays to consider. A progress report is due on the 

28th of May and a presentation on the 2nd of June before mid-year break over June and July. Work is 

planned to be completed over the holidays but at a slower rate.  
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Figure 1 - Gantt Chart outlining the project timeline and major milestones. 

Risk Assessment and Ethical Considerations 
 

No ethical considerations are required for this project as no human data or tissue will be used. 

However, these techniques need to be considered for a human interface as future ground crews will 

have to make decisions based on the information calculated.  

Due to the software and mathematical nature of the proposed project, it includes low grade hazards and 

some but notable risks for completion. Majority of the risk hangs on the ability of the group to 

coordinate and implement AI techniques in a MATLAB or STK environment. Included with this, STK 

may not be available to students and so a more mathematical environment of MATLAB and Simulink 

will be relied on. Furthermore the AI programs trained using MATLAB or Python may not interact 
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with the STK environment properly further limiting the simulation and requiring a work around to be 

used. File sharing is critical to both members working on this project and so an adequate and functional 

file organisational system must be decided upon. Furthermore, if no examples of previous programs 

exist then AI algorithms will have to be created from scratch with the understanding available making 

development longer. Developing feasible and working techniques could be complicated and beyond 

our understanding. Progress maybe limited if a solution or knowledgeable person cannot be consulted. 

Lastly data to train models and test algorithms on will need to be sourced from online or through our 

supervisors. Real world hieratical data might be classified or proprietary and so hidden from our use. 

Failure to find real world hieratical data will limit the applicability of the programs created as it will 

reply on synthetic and assumed data.  

Below is a SWOT and Risk Scenario table to quickly summarise the above information.  

Table 1: SWOT Analysis 

Strengths Weaknesses 

• Quicker satellite response. 

• Reduced likely hood of space collisions  

• Reduced groundcrew maintenance 

required. 

• Limited time to develop and understand. 

• No previous experience with AI or deep 

software programs. 

Opportunities Threats 

• Future Application. 

• Cutting edge of space systems 

development. 

• Reduced groundcrew overhead. 

• Stuck not understanding principles. 

• No access to real, historical data. 

• No STK access. 

• STK doesn’t interact with AI models 

generated in Python or MATLAB.  

• AI Training time is extensive.  

Table 2: Scenarios and Solutions 

Risk Scenario Proposed Solution 

STK not available for students Use MATLAB and Simulink, or Python instead 

File sharing is available to allow simultaneous 

work 

Upload latest version and blend features while 

completing integration acceptance testing  

AI examples are unable to be sourced or 

implemented 

AI created from scratch 

Historical data for training cant be accessed Synthetic data created based of papers and with 

some assumptions 

Limited understanding of theory needed to 

implement AI model 

Simplify model to allow for ideal case removing 

complicated areas 

STK doesn’t work with Python or MATLAB AI 

models 

Create models in language that works with STK 

AI Training time is extensive to tarin or refine Use University computers with more processing 

power 

Other university commitments reduce useable 

time due to assignments and deadlines  

Simplify goals to allow for other commitments  
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